Installer manual

01522.1

4 input/output device, 4 relay outputs NO 16 A 250 V~.

Contents

GENERAL CHARACTERISTICS AND FUNCTIONS from page 5

COMMUNICATION OBJECTS AND ETS PARAMETERS from page 8

For details of the Well-contact Plus system, consult the installer manual, which can be downloaded from the Download section \Rightarrow Software \Rightarrow Well-contact Plus on the website www.vimar.com.

4 input/4 output device

General characteristics and functions

Device with 4 inputs/outputs, 4 NO relay outputs 16 A 250 V \sim, programmable with control function for lights, roller shutters with slat orientation, push buttons for local control, 4 programmable digital inputs for potential-free contacts, KNX standard, installation on DIN rails (60715 TH35), occupies 4 modules size 17.5 mm .

01522.1

General characteristics

The device is designed to manage 4 inputs and 4 generic outputs for typical applications in the service industry (access to offices, hospital or hotel rooms, swimming pools, saunas, sports facilities, restricted access areas, etc.). The device has 4 ON/OFF inputs and 4 relay outputs 16 A $250 \mathrm{~V} \sim$.
It is also designed to work as a virtual pocket function for the presence control in the room.
Outputs 1-2 and 3-4 can be used to control roller shutters or Venetian blinds.

Functions

The functions available are the same for all channels.
For "Single outputs", the following functions are available for the outputs:

- Disabled
channel without function;
- Switching module the output is switched according to the other parameters;
- Stair light depending on the other parameters, the output is switched for a period of time (one-position stable relay).
Two outputs can be grouped together (OUT1/OUT2 and OUT3/ OUT4 to obtain the following functions:
- Roller shutter
- Venetian blinds

Fr the inputs:

- Disabled channel without function;
- Grouped channels: control or roller shutter function (IN 1/2 and IN $3 / 4$ are connected to two separate control devices e.g. 20062);
- Single channels: switching module, counter, scenario, short/ long switching module, sequences function. Dimmer control with 1 button, roller shutter with 1 button.

Manual operation

Press the $巛$ push button to enter manual mode to check the output connections. Press push buttons OUT1, OUT2, OUT3, OUT4 to control the related outputs. During manual operation, outputs OUT1/OUT2 and OUT3/OUT4 are interlocked to prevent damaging any motors connected, and messages received from the bus are not managed.

Behaviour after powering on/off the Bus

Bus off: depending on the parameter settings.
Bus on: depending on the parameter settings.

Behaviour after reset

As for Bus power-on.

4 input/4 output device

VIMAR

General characteristics and functions

The KNX Secure protocol

The device is used to activate the "KNX SECURE" data encryption protocol, entering the QR code or the digits in ETS and also creating a password associated to the project.
Note: If the QR code printed on the label is too small, take a photo of it with a smartphone and enlarge it.
The password is mandatory in the following cases:

- when enabling the Secure part of the devices in the project
- when entering the certificate of a Secure device in the project

If the Secure part of a device is disabled, it acts exactly like a device that does not support this protocol.
If you do not wish to enable the Secure part, when importing the device into the project close the Secure request window as described in the following procedure.

1. Add the Secure device to the ETS project.

2. Ignore the set password request.

4 input/4 output device

VIMAR

General characteristics and functions

3. The device is displayed with the Secure part disabled.

囲 ETS5 ${ }^{m}$ - Progetto test
ETS Modifica Spazio di lavoro Messa in Servizio Diagnostica Apps Finestra

4. No password is associated to the project.

5. No certificate is associated to the project.

4 input/4 output device

VIMAR

Communication objects and ETS parameters

List of existing communication objects

The following objects are available for each channel, depending on the function and settings; they are identical for every channel or for pairs of channels used for roller shutters. If a channel is not on there are no communication objects.

Output communication objects

Number *	Name	Object Function	Description Group Address	Length	C	R	W	T	U	Data Type
$\underline{+}{ }^{+} 1$	Out 1	Switch on/off		1 bit	C	-	W	-	U	switch
$\underline{+}{ }^{+} / 4$	Out 1	Block		1 bit	C	-	W	-	U	enable
$\underline{+}{ }^{+}$	Out 1	Scene		1 byte	C	-	W	-	U	scene control
$\underline{+\quad+6}$	Out 1	Status		1 bit	C	R	-	T	-	switch
$\underline{+}{ }^{+1} 7$	Out 1	Logic 1		1 bit	C	-	W	-	U	boolean
$\underline{+} \mid 8$	Out 1	Logic 2		1 bit	C	-	W	.	U	boolean
$\underline{-19}$	Out 1	Logic 3		1 bit	C	-	W	-	U	boolean
$\stackrel{\rightharpoonup}{\mathbf{k}}{ }^{10}$	Out 1	Logic 4		1 bit	C	-	W	-	U	boolean
	Out 2	Stair case		1 bit	C	-	W	-	U	start/stop
$\stackrel{\square}{\boldsymbol{*} \mid 17}$	Out 2	Block		1 bit	C	-	W	-	U	enable
$\stackrel{+19}{ }{ }^{+19}$	Out 2	Status		1 bit	C	R	- T	T	-	switch
- $\mathbf{H}_{\text {+ }}$ 111	Central function	Switch on/off		1 bit	C	-	W	-	U	switch

Example: Output 1 - Switching module with block on, scenario on and logic with 4 objects, Output 2 - Stair light with block on

Number *	Name	Object Function	Description Group Address	Length	C	R	w	T	U	Data Type	
$\stackrel{*}{*} 1$	Out $1 / 2$	Shutter up/down		1 bit	C	-	w	-	U	up/down	
$\underline{-+\mid 2}$	Out $1 / 2$	Blinds up/down /stop		1 bit	C	-	W	-	U	up/down	
$\stackrel{-1}{+} \mid$	Out $1 / 2$	Scene		1 byte	C	-	W	-	U	scene control	
	Out $1 / 2$	Act. direction		1 bit	C	R	-	T	-	up/down	
$\stackrel{-1}{ }{ }^{+1}$	Out $1 / 2$	Position (Absolute)		1 byte	C	-	W	-	-	percentage (0.100\%)	
$\stackrel{+17}{+}$	Out $1 / 2$	abs. Position of blinds		1 byte	C	-	W	-	-	percentage (0.100\%)	
$\xrightarrow{+18}$	Out $1 / 2$	Position (Actual)		1 byte	C	R	-	T	-	percentage (0.100\%)	
	Out $1 / 2$	Actual Position of slats		1 byte	C	R	-	T	-	percentage (0.100\%)	
$\stackrel{\text { - }}{+1} 10$	Out $1 / 2$	Act. position valid		1 bit	C	R	-	T	-	boolean	
$\stackrel{+}{+}{ }^{+11}$	Out $1 / 2$	Drive to reference		1 bit	C	-	W	-	U	up/down	
$\stackrel{+}{+}{ }^{+12}$	Out $1 / 2$	Drive to limit		1 bit	C	-	W	-	U	up/down	
$\stackrel{+}{+}{ }^{+13}$	Out $1 / 2$	State upper Position		1 bit	C	R	-	T	-	boolean	
$\stackrel{\text { - }}{+}$ 14	Out $1 / 2$	State lower Position		1 bit	C	R	-	T	-	boolean	
$\stackrel{\text { ¢ }}{+1} 16$	Out $1 / 2$	Block manual mode		1 bit	C	-	W	-	U	enable	
$\stackrel{\text { + }}{\text { +17 }}$	Out $1 / 2$	Move		1 bit	C	R	-	T	-	boolean	
$\stackrel{\\|+189}{ }$	Out $1 / 2$	Alert (Wind)		1 bit	C	-	W	-	U	alarm	
$\stackrel{\square}{\boldsymbol{+} \mid} \mid 90$	Out $1 / 2$	Alert (Rain)		1 bit	c	-	w	-	U	alarm	
$\stackrel{*}{+}+91$	Out $1 / 2$	Alert (Frost)		1 bit	c	-	W	-	U	alarm	
$\stackrel{+1}{+192}$	Out $1 / 2$	Block		1 bit	C	-	W	-	U	enable	

Example: Out 1/2 - Venetian blinds with possibility to control the position from the bus and with warnings active

4 input／4 output device

VIMAR

Communication objects and ETS parameters

Input communication objects

Number＊	Name	Object Function	Description Group Address	Length	C	R	w	T	U	Data Type
$\stackrel{\rightharpoonup}{+}{ }^{\text {｜}} 53$	$\ln 1$	Switch		1 bit	c	R	－	T	－	switch
$\stackrel{\rightharpoonup}{\boldsymbol{+}}{ }^{\text {＋}}$ 56	$\ln 1$	Status		1 bit	C	－	W	－	U	switch
－ $\overrightarrow{\mathrm{H}}_{\boldsymbol{+}} \mathbf{6 1}$	$\ln 1$	Blocking object		1 bit	c	－	W	－	U	boolean
$\stackrel{+}{+\overrightarrow{+} \mid 62}$	$\ln 2$	Send Value－rising		1 bit	C	R	－	T	－	switch
	$\ln 2$	Send Value－falling		1 bit	C	R	－	T	－	switch
$\stackrel{\mathrm{m}}{\boldsymbol{+} \mid 70}$	$\ln 2$	Blocking object		1 bit	\bigcirc	－	W	－	U	boolean
	$\ln 3$	Short press function		1 byte	c	R	－	T	－	counter pulses（0．．255）
$\stackrel{\rightharpoonup}{\boldsymbol{+}}{ }^{\text {¢ }}$	$\ln 3$	Long press function		1 byte	C	R	－	T	－	counter pulses（0．255）
$\stackrel{\rightharpoonup}{+} \mid 80$	$\ln 4$	Short press function		1 byte	C	R	－	T	－	counter pulses（0．255）
$\underline{-1} \mid 81$	$\ln 4$	Long press function		1 byte	C	R	－	T	－	counter pulses（0．255）

Example：Input 1 －Switching module with one object，Input 2 －Switching module with several objects on the edge，Input 3 －Switching module with several objects／short－ long press／call up and store scenario，Input 4 －Switching module with more than one object sending value on short press and long press

Number＊	Name	Object Function	Description	Group Address	Length	C	R	W	T	U	Data Type	
	In 1	Sequence short－Value			1 byte	C	R	－	T	－	counter pulses（0．255）	
－${ }_{\text {¢ }}+54$	In 1	Sequence long－Value			1 byte	C	R	－	T	－	counter pulses（0．255）	
－+62	$\ln 2$	Dimming on／off			1 bit	C	R	－	T	－	switch	
$\xrightarrow{+1} 63$	$\ln 2$	Dimming			4 bit	C	R	－	T	－	dimming control	
－⼗ㅟ｜65	$\ln 2$	Status			1 bit	C	－	W	－	U	switch	
$\stackrel{\mid 1}{\mathbf{+}} \mathbf{7} 71$	$\ln 3$	Shutter			1 bit	C	R	－	T	－	up／down	
$\stackrel{+7}{+1} 72$	$\ln 3$	Shutter Stop			1 bit	C	R	－	T	－	trigger	
$\stackrel{\\|}{\boldsymbol{+}} \mathbf{\|} 80$	$\ln 4$	Counter reset			1 bit	C	－	W	－	U	trigger	
$\stackrel{\square}{\boldsymbol{+}} \mathbf{\|} 81$	$\ln 4$	Counter Threshold			1 bit	C	R	－	T	－	boolean	
	$\ln 4$	Counter			1 byte	C	R	－	T	－	counter pulses（0．255）	

Example：Input 1 －Switching module with more than one object／sequence，Input 2 －Dimmer switching module with one button，Input 3 －Roller shutter switching module with single button，Input 4 －Counter

Number＊	Name	Object Function	Description	Group Address	Length	C	R	W	T	U	Data Type	
$\stackrel{+1}{\boldsymbol{+}} 53$	In 1／2	Dimming on／off			1 bit	C	R	－	T	－	switch	
$\stackrel{\\|}{\boldsymbol{\epsilon}}{ }^{\text {｜}} 54$	In $1 / 2$	Dimming			4 bit	C	R	－	T	－	dimming control	
$\stackrel{+\vec{t}}{ }+71$	$\ln 3 / 4$	Sunprotection up／down			1 bit	C	R	－	T	－	up／down	
$\stackrel{\text { ¢ }}{\boldsymbol{+}} \mathbf{7} 72$	In 3／4	Blinds on／off／stop			1 bit	C	R	－	T	－	open／close	

Example：Input 1／2－Grouped inputs with Dimmer control function，Input 3／4－Grouped inputs with Roller shutter control function

Number＊	Name	Object Function	Description Group Address	Length	C	R	W	T	U	Data Type
－${ }_{\text {¢ }}$（105	Virtual holder	First movement detector		1 bit	C	－	W	－	U	switch
－${ }_{\text {¢ }}$（106	Virtual holder	Second movement detector		1 bit	c	－	W	－	U	switch
－${ }^{\text {t }} 1107$	Virtual holder	Activity reporting		1 bit	c	－	W	－	U	switch
$\stackrel{\text {－}}{ }$｜ 108	Virtual holder	Door input		1 bit	c	－	W	－	U	switch
$\stackrel{\text {＋}}{ }$｜ 109	Virtual holder	Waiting time		2 bytes	c	－	W	－	U	time（s）
－${ }_{\text {¢ }}$ 110	Virtual holder	Room presence		1 bit	c	R	－	T	－	switch

Example：Virtual pocket enabled with 2 motion sensors and activity signal．

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Communication objects per channel

Number	Name in ETS	Function in ETS	Description	Length	Flag 1				
					C	R	W	T	U
OUTPUTS			With outputs OUT1, OUT2, OUT3 and OUT4 configured as single outputs						
1	Out 1	On/ off	(If the output is enabled as "Switching module") to switch the output On/ Off	1 bit	X		X		X
2	Out 1	Stair light	(If the output is enabled as "Stair Light") to switch the output on, with timed switch-off.	1 bit	X		X		X
3	Out 1	Force	(If the output "Block" parameter is on, with "Force" function) to force the output On/Off from the Bus	2 bit	X		X		
4	Out 1	Block	((If the output "Block" parameter is on, with "Block" function) to block the output control from the Bus	1 bit	X		X		X
5	Out 1	Scenario	(If the output "Scenario" parameter is on), to activate and, if required, store (if the parameter is active) a scenario associated to the output	1 byte	X		X		X
6	Out 1	State	(If the output is enabled as "Switching module") to know the output state	1 bit	X	X		X	
7... 13	Out 1	Logic 1... 7	(If the logic function for the output is on) A number of objects from 1 to 7 can be selected for OR, AND, XOR logics with the "On/off" object to determine the output state.	1 bit	X		X		X
14... 26	Out 2 (see similar objects for Out 1)		As per Out 1						
27... 39	Out 3 (see similar objects for Out 1)		As per Out 1						
40... 52	Out 4 (see similar objects for Out1)		As per Out 1						
OUTPUTS			With outputs OUT1/2 and OUT3/4 configured as roller shutter or Venetian blinds						
1	Out 1/2	Roller shutter Up/Down	(If the output is enabled as "Roller shutter" or "Venetian blinds") To move the Venetian blinds/roller shutter.	1 bit	X		X		X
2	Out 1/2	Slats up/down/stop	(If the output is enabled as "Venetian blinds") To rotate/stop the slats.	1 bit	X		X		X
3	Out 1/2	Stop	(If the output is on as "Roller shutter") To stop the roller shutter.	1 bit	X		X		X
4	Out 1/2	Scenario	(If the output is on as "Venetian blinds" or "Roller shutter" and "Scenario" is on) To call up the scenarios from the Bus.	1 byte	X		X		X
5	Out 1/2	Actual direction	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) Object signalling the roller shutter direction of movement. Reading the state, the object responds with the last movement made or the current one if the roller shutter is moving ($1=$ up, $0=$ down).	1 bit	X	X		X	
6	Out 1/2	Position (Absolute)	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) To set the roller shutter position from a supervisor ($0 \%=$ all up, $100 \%=$ all down.	1 byte	X		X		
7	Out 1/2	Absolute slat position	(If the output is on as "Venetian blinds" and "select objects for absolute position" is on) To set the slat position from a supervisor ($0 \%=$ open, $100 \%=$ closed).	1 byte	X		X		
8	Out 1/2	Position (Actual)	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) To know the actual position of the roller shutter ($0 \%=$ all up, $100 \%=$ all down.	1 byte	X	X		x	
9	Out 1/2	Current slat position	(If the output is on as "Venetian blinds" and "select objects for absolute position" is on). To know the actual slat position.	1 byte	X	X		X	
10	Out 1/2	Valid actual position	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) To know the actual roller shutter position.	1 bit	X	X		X	
11	Out 1/2	Door to reference	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) Object used to move the roller shutter Up/Down: sends a bit= 1 to the Bus to raise or a bit=0 to lower (the device will ignore all other commands sent to the Bus until the output switches off within the set time)	1 bit	X		X		X
12	Out 1/2	Door at limit	(If the output is enabled as "Venetian blinds" or "Roller shutter" and the "Driving Area - Limitation" is on) Object used to move the roller shutter Up/Down: receives a bit $=1$ from the Bus to raise or a bit $=0$ to lower.	1 bit	X		X		X

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Continued

Number	Name in ETS	Function in ETS	Description	Length	Flag 1				
					C	R	W	T	U
13	Out 1/2	Upper state Position	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) The device sends a bit to 1 when the upper limit stop is reached.	1 bit	X	X		X	
14	Out 1/2	Lower state Position	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) The device sends a bit to 1 when the lower limit stop is reached.	1 bit	X	X		X	
15	Out 1/2	Automatic lock	(If the output is enabled as "Venetian blinds" or "Roller shutter" and "Automatic roller shutter operation" is on) To enable/disable the automatic operation (rain, wind, etc.).	1 bit	X		X		X
16	Out 1/2	Lock mode manual	(If the output is enabled as "Venetian blinds" or "Roller shutter") To enable/ disable the manual operation (controlled from a button via Bus).	1 bit	X		X		X
17	Out 1/2	Move	(If the output is on as "Venetian blinds" or "Roller shutter" and "select objects for absolute position" is on) Object that sends a bit = 1 when the movement starts, or a bit = 0 when the movement ends. It is also possible to read the current state.	1 bit	X	X		x	
89	Out 1/2	Warning (Wind)	(If the output is enabled as "Venetian blinds" or "Roller shutter" and the "Warning Function" is on with "Warning Wind") to move the roller shutter/ Venetian blinds to the position for this type of warning set in the specific parameters.	1 bit	X		X		X
90	Out 1/2	Warning (Rain)	(If the output is enabled as "Venetian blinds" or "Roller shutter" and the "Warning Function" is on with "Warning Rain") to move the roller shutter/ Venetian blinds to the position for this type of warning set in the specific parameters.	1 bit	X		X		X
91	Out 1/2	Warning (Frost)	(If the output is enabled as "Venetian blinds" or "Roller shutter" and the "Warning Function" is on with "Warning Frost") to move the roller shutter/ Venetian blinds to the position for this type of warning set in the specific parameters.	1 bit	X		X		X
92	Out 1/2	Block	(If the output is enabled as "Venetian blinds" or "Roller shutter" and the "Warning Function" is on with "Block") to block the roller shutter at the limit stop with a bit to "1" (upper or lower, according to the parameters).	1 bit	X		X		X
97	Automatic A	Automatic operation 1 Position	(If the "Automatic operation" parameter of "Block-A" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
98	Automatic A	Automatic operation 2 Position	(If the "Automatic operation" parameter of "Block-A" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
99	Automatic A	Automatic operation 3 Position	(If the "Automatic operation" parameter of "Block-A" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
100	Automatic A	Automatic operation 4 Position	(If the "Automatic operation" parameter of "Block-A" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
101	Automatic B	Automatic operation 1 Position	(If the "Automatic operation" parameter of "Block-B" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
102	Automatic B	Automatic operation 2 Position	(If the "Automatic operation" parameter of "Block-B" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
103	Automatic B	Automatic operation 3 Position	(If the "Automatic operation" parameter of "Block-B" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
104	Automatic B	Automatic operation 4 Position	(If the "Automatic operation" parameter of "Block-B" is on) To automatically control this roller shutter output object which can recall specific positions similar to scenarios.	1 bit	X		X		
INPUTS In IN 1/2 and IN 3/4 mode, single channels									
53	$\ln 1$	Switching module	(If the Input is on with "Switching to an object" function), to manage On/Off sending to input contact edges. If the sub-function "Toggle on rising/falling edge" is on, to manage the On/Off sequence on closing or opening the input contact, this State object must also be associated to the same group.	1 bit	X	X		X	
53	In 1	Send value - up	(If the Input is on with "Switching module with several objects" function with sub-function "on the edge"), to send an On or Off value, selected in the configuration, to the rising edge.	1 bit	X	X		X	
53	In 1	Function short press	(If the Input is on with "Switching module with several objects" function with sub-function "On/Off", "On", "Off"), to send an On, Off, Toggle On/Off value for short press.	1 bit	X	X		X	

4 input/4 output device

Communication objects and ETS parameters

Continued

Number	Name in ETS	Function in ETS	Description	Length	Flag 1				
					C	R	W	T	U
53	In 1	Function short press	(If the Input is on with "Switching module with several objects" function with sub-function "Scenario" or "Store scenario"), to call up or store a scenario with short press.	1 byte	X		X		X
53	In 1	Function short press	(If the Input is on with "Switching module with several objects" function with sub-function "Forced On", "Forced Off", "Disable forcing", toggle "Forced On/Disable" or toggle "Forced Off/Disable"), to enable or disable forcing with short press.	2 bit	X	X		X	
53	In 1	Function short press	(If the Input is on with "Switching module with several objects" function with sub-function "Value"), to send a 1 byte or 2 byte value selected in the short press configuration.	1 byte 2 byte	X	X		X	
53	$\ln 1$	Short sequence - Value 1	(If the Input is on with "Switching module with several objects" function with sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the first value for the short press.	$\begin{aligned} & 1 \text { bit } \\ & 2 \text { byte } \end{aligned}$	X	X		X	
53	$\ln 1$	On/Off control	(If the Input is on with "Single button control") it is possible to control a dimmer in On/Off/Adjustment with a single contact (e.g. N.O. button) connected to the device Input, and with a short press will switch the object On/Off	1 bit	X	X		X	
53	In 1	Roller shutter	(If the Input with "Roller shutter single button control" function is on) it is possible to control the moving roller shutter using a single contact (e.g. N.O. button) connected to the device Input, with a long press	1 bit	X	X		X	
53	$\ln 1$	Reset counter	(If the Input is on with "Counter" function) to reset the counter.	1 bit	X		X		X
54	In 1	Function long press	(If the Input is on with "Switching module with several objects" function with sub-function "Value"), to send a 1 byte or 2 byte value selected in the long press configuration.	1 byte 2 byte	X		X		X
54	$\ln 1$	Function long press	(If the Input is on with "Switching module with several objects" function with sub-function "Scenario" or "Store scenario"), to call up or store a scenario with long press.	1 byte	X		X		X
54	In 1	Function long press	(If the Input is on with "Switching module with several objects" function with sub-function "Forced On", "Forced Off", "Disable forcing", toggle "Forced On/Disable" or toggle "Forced Off/Disable"), to enable or disable forcing with long press.	2 bit	X		X		X
54	In 1	Function long press	(If the Input is on with "Switching module with several objects" function with sub-function "Value"), to send a 1 byte or 2 byte value selected in the long press configuration.	1 byte 2 byte	X		X		X
54	In 1	Short sequence - Value 2	(If the Input is on with "Switching module with several objects" function with sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the second value for the short press.	1 bit 1 byte	X		X		X
54	$\ln 1$	Counter threshold	(If the Input is on with "Counter" function and the "Threshold on" parameter is on) to sent a " 1 " bit to the Bus if the pulse counter has reached the limit threshold (limit set in the device parameters)	1 bit	X	X		X	X
54	In 1	Dimmer Control	(If the Input is on with "Single button control") it is possible to control a dimmer in On/Off/Adjustment with a single contact (e.g. N.O. button) connected to the device Input, a long press on the button will cyclically control the positive-negative until the 4 bit object is released	4 bit	X	X		X	
54	In 1	Stop roller shutters	(If the Input with "Roller shutter single button control" function is on) it is possible to stop the moving roller shutter using a single contact (e.g. N.O. button) connected to the device Input, with a short press.	1 bit	X	X		X	
55	$\ln 1$	Short sequence - Value 3	(If the Input is on with "Switching module with several objects" function with sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the third value for the short press.	1 bit 1 byte	X	X		X	
56	In 1	Short sequence - Value 4	(If the Input is on with "Switching module with several objects" function with sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the fourth value for the short press.	1 bit 1 byte	X	X		X	
57	$\ln 1$	Long sequence Value 1	(If the Input is on with "Switching module with several objects" function and sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the first value for a long press.	1 bit 1 byte	X		X		X
58	In 1	Long sequence Value 2	(If the Input is on with "Switching module with several objects" function with sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the second value for the long press.	1 bit 1 byte	X		X		X
59	In 1	Long sequence Value 3	(If the Input is on with "Switching module with several objects" function with sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the third value for the long press.	1 bit 1 byte	X		X		X
60	In 1	Long sequence Value 4	(If the Input is on with "Switching module with several objects" function and sub-function "Sequence"), to send a 1 bit or 1 byte value selected in the configuration as the fourth value for a long press.	1 bit 1 byte	X		X		X

4 input/4 output device

Communication objects and ETS parameters

Continued

Number	Name in ETS	Function in ETS	Description	Length	Flag 1				
					C	R	W	T	U
56	In 1	State	(If the Input is on with "Switching module with several objects" function with sub-function "Toggle on rising/falling edge"), to know the input state: this object must be associated to the same group as the input set as Toggle to obtain the Toggle On/Off sequence	1 bit	X		X	X	X
56	In 1	Counter	(If the Input is on with "Counter" function with 8 bit type) to enable the pulse counter function on the input	1 byte	X	X		X	
56	In 1	Counter	(If the Input is on with "Counter" function with 16 bit type) to enable the pulse counter function on the input	2 byte	X	X		X	
56	In 1	Counter	(If the Input is on with "Counter" function with 32 bit type) to enable the pulse counter function on the Input	4 byte	X	X		X	
56	In 1	State	(If the Input is on with "Single button control") it is possible to know the On/Off state of a dimmer controlled by a button connected to this Input	1 bit	X		X	X	X
56	In 1	Toggle state short press	(If the Input is on with "Switching module with several objects" function with sub-function "On/Off"), to know the input state: this input must be associated to the control to obtain the Toggle On/Off function for short press.	1 bit	X		X		X
57	In 1	Toggle state long press	(If the Input is on with "Switching module with several objects" function with sub-function "On/Off"), to know the input state: this input must be associated to the control to obtain the Toggle On/Off function for long press.	1 bit	X		X		X
61	In 1	Object block	(With any function/sub-function, if the "Block" parameter is on) - to block the input operation via a 1 bit sent to the Input group	1 bit	X		X		X
62... 70	In 2 (see similar objects for $\ln 1$)		as per IN 1						
71... 79	In 3 (see similar objects for $\ln 1$)		as per IN 1						
80... 88	$\begin{array}{\|l} \text { In } 4 \text { (see } \\ \text { similar objects } \\ \text { for } \ln 1 \text {) } \end{array}$		as per IN 1						
INPUTS			In IN 1/2 and IN 3/4 mode, grouped channels						
53	$\ln 1 / 2$	On/Off control	(If the Input is on with "Dimmer control" function) it is possible to control a dimmer in On/Off via a double contact (e.g. 2 N.O. buttons) where the two buttons are connected to inputs 1 and 2 on the device, and with a short closing of IN 1 will switch On and with the short closing of IN 2 will switch Off	1 bit	X	X		X	
53	In 1/2	Roller shutter	(If the Input is on with "Sun protection" function) to stop a roller shutter via a double contact (e.g. 2 N.O. buttons) where the two buttons are connected to inputs 1 and 2 of the device, and to stop any of the two inputs can be enabled	1 bit	X	X		X	
54	In 1/2	Dimmer control	(If the Input is on with "Dimmer control" function) it is possible to control a dimmer via a double contact (e.g. 2 N.O. buttons) where the two buttons are connected to Inputs 1 and 2 of the device, and with a long closing of IN 1 or IN 2 will increase/decrease according to the set parameters	4 bit	X	X		X	
54	In 1/2	Slats/stop control	(if the Input is on with "sun protection" function) it is possible to control a roller shutter moving up/down via a double contact (e.g. 2 N.O. buttons) connected to Inputs 1/2 of the device	1 bit	X	X		X	
61	In 1/2	Object block	(With any function/sub-function, if the "Block" parameter is on) - to block the input operation via a " 1 " bit sent to the Input group	1 bit	X		X		X
71... 79	In 3/4 (see similar objects for $\ln 1 / 2$)		As per IN 1 and 2						
VIRTUAL POCKET									
105	Virtual pocket	First motion sensor	(If the "Virtual pocket" function is on) To receive an indication from a motion sensor.	1 bit	X		X		X
106	Virtual pocket	Second motion sensor	(If the "Virtual pocket" function is on and the "Second motion sensor" is enabled) To receive an indication from a second motion sensor.	1 bit	X		X		X
107	Virtual pocket	Activity signalling	(If the "Virtual pocket" function is on and "Activity signalling" is enabled) To receive an indication from a second motion sensor.	1 bit	X		X		X

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Continued

Number	Name in ETS	Function in ETS	Description	Length	Flag 1				
					C	R	W	T	U
108	Virtual pocket	Door input	(If the "Virtual pocket" function is on) To receive an indication on the door opening and closing.	1 bit	X		X		X
109	Virtual pocket	Wait time	(If the "Virtual pocket" function is on) To receive a value via bus for the Wait time.	1 byte	X		X		X
110	Virtual pocket	Presence in room	(If the "Virtual pocket" function is on) To transit a bit=1 to signal that the room is occupied and a bit=0 to signal that the room is free.	1 bit	X	X		X	

$\mathbf{C}=$ Communication, $\mathbf{R}=$ Read, $\mathbf{W}=$ Write, $\mathbf{T}=$ Transmission, $\mathbf{U}=$ Enable update
Communication objects per channel: once for all channels

| Number | Function | Use | DPT | Direction |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 111 | Centralised function | Simultaneous on/off of more than one output configured as "Switching module"
 or "Stair light". For "Stair light" the "Stair light time" is not considered and so the
 output must be switched off from the "Centralised function". | DPT 1.001 | In, Write |

Standard communication object settings

Communication objects: default output/input settings

Number	Name in ETS	Function in ETS	Length	Priority	Flag 1				
					C	R	W	T	U
1	Out 1	On/off	1 bit	Low	X		X		X
2	Out 1	Stair light	1 bit	Low	X		X		X
3	Out 1	Force	2 bit	Low	X		X		X
4	Out 1	Block	1 bit	Low	X		X		X
5	Out 1	Scenario	1 byte	Low	X		X		X
6	Out 1	State	1 bit	Low	X	X		X	
7	Out 1	Logic 1	1 bit	Low	X		X		X
8	Out 1	Logic 2	1 bit	Low	X		X		X
9	Out 1	Logic 3	1 bit	Low	X		X		X
10	Out 1	Logic 4	1 bit	Low	X		X		X
11	Out 1	Logic 5	1 bit	Low	X		X		X
12	Out 1	Logic 6	1 bit	Low	X		X		X
13	Out 1	Logic 7	1 bit	Low	X		X		X
14... 52	Out 2, Out 3, Out 4	As per Out 1							
1	Out 1/2	Roller shutter Up/Down	1 bit	Low	X		X		X
2	Out 1/2	Slats up/down/stop	1 bit	Low	X		X		X
3	Out 1/2	Stop	1 bit	Low	X		X		X
4	Out 1/2	Scenario	1 byte	Low	X		X		X
5	Out 1/2	Actual direction	1 bit	Low	X	X		X	
6	Out 1/2	Position (Absolute)	1 byte	Low	X		X		
7	Out 1/2	Absolute slat position	1 byte	Low	X		X		
8	Out 1/2	Position (Actual)	1 byte	Low	X	X		X	
9	Out 1/2	Current slat position	1 byte	Low	X	X		X	
10	Out 1/2	Valid actual position	1 bit	Low	X	X		X	
11	Out 1/2	Door to reference	1 bit	Low	X		X		X
12	Out 1/2	Door at limit	1 bit	Low	X		X		X
13	Out 1/2	Upper state - Position	1 bit	Low	X	X		X	
14	Out 1/2	Upper - Lower state	1 bit	Low	X	X		X	
15	Out 1/2	Automatic lock	1 bit	Low	X		X		X
16	Out 1/2	Manual lock mode	1 bit	Low	X		X		X
17	Out 1/2	Move	1 bit	Low	X	X		X	
89	Out 1/2	Warning (Wind)	1 bit	Low	X		X		X
90	Out 1/2	Warning (Rain)	1 bit	Low	X		X		X

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Continued

Number	Name in ETS	Function in ETS	Length	Priority	Flag 1				
					C	R	W	T	U
91	Out 1/2	Warning (Frost)	1 bit	Low	X		X		X
92	Out 1/2	Block	1 bit	Low	X		X		X
$\begin{aligned} & 27 \ldots 43 \\ & 93 \ldots 96 \end{aligned}$	Out 3/4	As per Out 1/2							
97	Automatic A	Automatic operation 1 - Position	1 bit	Low	X		X		x
98	Automatic A	Automatic operation 2 - Position	1 bit	Low	X		X		x
99	Automatic A	Automatic operation 3 - Position	1 bit	Low	X		X		X
100	Automatic A	Automatic operation 4 - Position	1 bit	Low	X		X		x
101	Automatic B	Automatic operation 1 - Position	1 bit	Low	X		X		X
102	Automatic B	Automatic operation 2 - Position	1 bit	Low	X		X		X
103	Automatic B	Automatic operation 3 - Position	1 bit	Low	X		X		X
104	Automatic B	Automatic operation 4 - Position	1 bit	Low	X		X		x
111	Centralised function	On/off	1 bit	Low	X		X		X
53	$\ln 1$	Switching module	1 bit	Low	X	x		X	
53	$\ln 1$	Send value - up	1 bit	Low	X	X		X	
53	In 1	Short press function	$\begin{aligned} & 1 \text { bit, } 2 \text { bit } \\ & 1 \text { byte, } 2 \text { byte } \\ & \hline \end{aligned}$	Low	X	X		X	
53	$\ln 1$	Short sequence - Value 1	1 bit 1 byte	Low	X	X		X	
53	$\ln 1$	On/Off control	1 bit	Low	X	x		X	
53	$\ln 1$	Roller shutter	1 bit	Low	X	X		X	
53	$\ln 1$	Reset counter	1 bit	Low	X		X		X
54	In 1	Long press function	$\begin{aligned} & 1 \text { bit, } 2 \text { bit } \\ & 1 \text { byte, } 2 \text { byte } \\ & \hline \end{aligned}$	Low	X	X		X	
54	$\ln 1$	Counter threshold	1 bit	Low	X	X		X	X
54	$\ln 1$	Dimmer Control	4 bit	Low	X	X		X	
54	$\ln 1$	Stop roller shutter	1 bit	Low	X	X		X	
55	In 1	Short sequence - Value 3	1 bit 1 byte	Low	X	X		X	
56	In 1	Short sequence - Value 4	1 bit 1 byte	Low	X	X		X	
56	$\ln 1$	State	1 bit	Low	X		X	X	X
56	$\ln 1$	Counter	1 byte, 2 byte, 3 byte	Low	X	X		X	
56	$\ln 1$	Short press toggle state	1 bit	Low	X		X		x
57	$\ln 1$	Long press toggle state	1 bit	Low	X		X		X
61	$\ln 1$	Object block	1 bit	Low	X		X		X
62... 88	$\ln 2, \ln 3, \ln 4$	As per In 1							
53	$\ln 1 / 2$	On/Off control	1 bit	Low	X	x		X	
53	$\ln 1 / 2$	Roller shutter	1 bit	Low	X	X		X	
54	$\ln 1 / 2$	Dimmer control	4 bit	Low	X	X		X	
54	In 1/2	Slats/stop control	1 bit	Low	X	X		X	
61	$\ln 1 / 2$	Object block	1 bit	Low	X		X		X
71... 79	$\ln 3 / 4$	As per ln 1/2							
105	Virtual pocket	First motion sensor	1 bit	Low	X		X		x
106	Virtual pocket	Second motion sensor	1 bit	Low	X		X		X
107	Virtual pocket	Activity signalling	1 bit	Low	X		X		X
108	Virtual pocket	Door input	1 bit	Low	X		X		X
109	Virtual pocket	Wait time	2 byte	Low	X		X		X
110	Virtual pocket	Presence in room	1 bit	Low	X	X		X	

Number of communication objects	Max. number of group addresses	Max. number of associations
111	254	255

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Reference ETS parameters

General

The following parameters are exclusive for all channels.

General parameters

The interlock between outputs is useful for example for the fancoil controls, to avoid the two inputs from being enabled at the same time.

ETS text	Values available [Default value]	Comment
Debounce time	$10 . .120 \mathrm{~ms}$	Minimum input contact on time
	[10]	
Long time button [s]	0.5-30 sec.	Minimum input contact on time for functions associated to the long press
	[3]	
Interlock enabled	0=off	Only one output (e.g. for the fan coil) can be on at a time
	1=on	
	[0]	
Enabled for outputs	$3=A B$	If "interlock enabled": outputs for which it will be on. If "A B" for example, it will not be possible to activate Out 1 and 2 at the same time
	$5=A C$	
	$9=\mathrm{AD}$	
	$6=\mathrm{BC}$	
	$10=B D$	
	$12=C D$	
	$7=\mathrm{ABC}$	
	$11=\mathrm{ABD}$	
	$13=\mathrm{ACD}$	
	$14=\mathrm{BCD}$	
	$15=$ A B C D	
	[7]	

Continued

Continued

ETS text	Values available [Default value]	Comment
Interlock time [ms]	$100-3000$	If "interlock enabled": time elapsing between the "Off" of an output and the next
	[100]	"On" of another output inter- locked to the previous one

Debounce time	10	- [ms]
Time Button long	3	- [s]
Interblock Active	Inactive 0 Active	
Active for Outputs Please refer to product documentation	$A B C$	\checkmark
Interblock time	100	* [ms]

General settings

Inputs

Function $\ln 1 / 2$
Function $\ln 3 / 4$

Outputs
Out $1 / 2$
Out 1
Out 2
Out 3/4

Single channels
Single channels

Single Output
Switch
Staircase
Shutter

Channel configuration. (Example: Single inputs, Output 1 - Switching module, Output 2 - Stair light, Output 3/4 - Roller shutter)

4 input/4 output device

Communication objects and ETS parameters

Outputs

Output: switching module 1... 4
The following parameters are available for each channel and are identical for all of them.

Parameter configuration
Management of outputs $1 / 2 / 3 / 4$ set as switching module.

ETS text	Values available [Default value]	Comment
Type	0 = normally closed	To define if the relay output is normally open or closed
	1 = normally open	
	[1]	
Activation delay	0... 30000 s	Activation delay in seconds
	[0]	
Deactivation delay	0... 30000 s	Deactivation delay in seconds
	[0]	
Centralised control function	0 = off	Centralised function (to control more than one output from the Bus at the same time)
	1 = on	
	[0]	
Block/Force	0 = no action	To block or force an output from the Bus
	1 = Block	
	2 = Force	
State at block state start	0 = Off	If block on
	1 = On	
	2 = no change	
	[2]	
State at block state end	$0=\mathrm{Off}$	If block on
	1 = On	
	2 = no change	
	[2]	
Behaviour at Bus power on	$0=0 f f$	To define the relay output state at bus power on
	1 = On	
	2 = no change	
	[2]	

Continued

Continued

ETS text	Values available [Default value]	Comment
Behaviour at Bus power off	0 = Off	To define the relay output state at bus power off
	1 = On	
	2 = no change	
	[2]	
Logic function	0 = off	To enable logics on the outputs (AND, OR, XOR) for up to 7 objects
	1 = on	
	[0]	
Scenario	0 = off	Scenario activation If on, an additional page is displayed (Output, secondary element scenario)
	1 = on	
	[0]	

Type	O Normally open Normally closed	
On Delay	0	$\stackrel{\square}{*}$
Off Delay	0	\star

Behaviour at bus power up	No change
Behaviour at bus power down	No change

Logic function

The on/off objects can be used with logic objects (1 to 7) to create AND/OR/XOR logic functions to enable or disable the related output (OUT1, OUT2, OUT3, OUT4).

Parameter configuration

ETS text	Values available [Default value]	Comment
	With 1 object	
	\ldots.	To enable the objects
	With 7 objects	required for the logic

Active logic inputs	with 7 Objects	
Logic operation	OR	
Logic type - input 1	(No inversion	Inverted
Logic type - input 2	O No inversion	Inverted
Logic type - input 3	(No inversion	Inverted
Logic type - input 4	(No inversion	Inverted
Logic type - input 5	O No inversion	Inverted
Logic type - input 6	O No inversion	Inverted
Logic type - input 7	O No inversion	Inverted

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Output, secondary element scenario

For each output, 8 scenario storage possibilities are available. For each scenario, the scenario index and the On or Off value for the output can be selected.

Scenario parameters (8 scenarios per output)

ETS text	Values available [Default value]	Comment
Store scenarios	0 = Off	The "Store scenarios" function is used to store the state linked to a scenario with a message from the Bus (scene learn).
	1 = On	
	[0]	
Scenario 1	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 1	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	
Scenario 2	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 2	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	
Scenario 3	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 3	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	
Scenario 4	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 4	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	
Scenario 5	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 5	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	
Scenario 6	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 6	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	
Scenario 7	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 7	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	
Scenario 8	Off	Used to select the scenario index.
	1... 64	
	[Off]	
Scenario 8	0=Off	To define the relay output state when scenario called up.
	1=On	
	[0]	

Scene saving enable

Scene 1

Scene 1
Scene 2
Scene 2
Scene 3
Scene 3
Scene 4
Scene 4
Scene 5

Scene 5
Scene 6
Scene 6
Scene 7
Scene 7
Scene 8
Scene 8
Scenario parameters

O Not active Active

Not active
O Off On

Not active
O Off On

Not active
O Off On

Not active
O Off On
Not active
O Off On
Not active
O Off On

Not active
O Off On

Not active
O Off On

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Output, timed stair light

The following parameters are available for each channel and are identical for all of them. If a channel is configures as stairs the following parameters are visible:

Stair light parameters (one-position stable output management)

Switch off warning

Warning Duration
Prewarning Duration
Manual Switch Off

Central Switch function
Behaviour when blocked
Behaviour when unblocked
Behaviour at bus power up
Behaviour at bus power down
Stair light parameters

O Normally open Normally closed
 \star [s]
Not active O Active \rightarrow [s]

10O Not active Active

O Not active Active
No change
No change
No change
No change

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Automatic parameter activation

These settings activate objects. Each block has 4 objects, used to automatic controls on 4 objects calling up positions (similar to scenarios).

Block A
Block B

Automatic operation parameters

Parameters in automatic operation

ETS text	Values available [Default value]	Comment
	$0=$ off	For block A objects
	$1=$ On	$1-4$ are activated
Block B	$[0]$	For block B objects
	$0=$ off	$1-4$ are activated
	$1=$ On	
	$[0]$	

Parameters

Venetian blinds parameters: characteristics relating to the control of Venetian blinds with slats

ETS text	Values available [Default value]	Comment
Execution time (sec)	1-10000	Movement time if not stopped
	[45]	
Step time for slats (ms)	100-1000	Sets the short press time for the button to interpret as slat control
	[200]	
Slat control time (ms)	10-10000	Sets the slat control time for each press
	[1200]	
Pause at change of direction (ms)	1-1000	Sets the delay time between the command and the change of direction
	[500]	
Motor start delay (ms)	0-255	Sets the delay time between the command and the start of movement (useful for motor starting)
	[0]	
Motor power-off delay (ms)	0-255	Sets the delay time between the command and the end of movement (limit stop)
	[0]	
Slat position at end of driving	0\%-100\%	Sets the slat position at the end from the reference travel 0-100\% having set the limit stop (100\% closed)
	[50]	
Slat position at end of driving by absolute value.	0\%-100\%	Sets the slat position at the end of the movement due to the "Position (absolute)" object
	[50]	
Object selection for absolute position	0=off	For feedback on the position on a supervisor, if on, $0 \%=$ all up and $100 \%=$ all down
	1=on	
	[0]	
Reaction after driving to reference	0=no reaction	Only if Position absolute
	1=Door to previous position	
	[0]	
Driving area: Limitation	$0=$ off	Only if limitation on: sets the upper/lower thresholds of the Venetian blind travel to stop it before the limit stop
	1=on	
	[0]	
Lower limit	0\%-100\%	Only if limitation on (driving area) $(100 \%=$ closed $)$
	[0\%]	

Continued

Complete running time

Running time
Step time for slats
Duration of slats adjustment
Pause at change of direction
Switch-on delay motor
Switch-off delay motor
Position of slats at end of driving
Position of slats at end of driving for absolute value

Select objects for absolute position

Driving area: Limitation

Automatic function (Shutter)

Venetian blinds parameters

4 input/4 output device

Communication objects and ETS parameters
Continued

ETS text	$\begin{array}{l}\text { Values available } \\ \text { [Default value] }\end{array}$	Comment		
	$0 \%-100 \%$	Only if limitation on (driving		
	$[100 \%]$	area) (100\% = closed)	$]$	Enables the Venetian blind
:---				
to be included in scenarios				

Roller shutter parameters: characteristics relating to the control of roller shutters (without slats)

ETS text	Values available [Default value]	Comment
Execution time (sec)	1-10000	Movement time if not stopped
	[45]	
Pause at change of direction (ms)	100 -1000	Sets the delay time between the command and the change of direction
	[500]	
Motor start delay	$0 \div 255$	Sets the delay time between the command and the start of movement (useful for motor starting)
	[0]	
Motor power-off delay	$0 \div 255$	Sets the delay time between the command and the end of movement (limit stop)
	[0]	
Select objects for absolute position	$0=\mathrm{Off}$	Selects the possibility or not to use communication objects to view the actual position of the roller shutter (0\%=all up, 100\%=all down) for feedback of the position on a supervisor
	1 = Door to previous position	
	[0]	
Reaction after driving to reference	$0=$ No reaction	If "Select objects for absolute position" on
	1 = Door to previous position	
	[0]	
Driving area: limitation	$0=$ Off	Only if limitation on: sets the upper/lower thresholds. of the Venetian blind travel to make it stop before the limit stop
	1 = On	
	[0]	
Lower limit	0\%... 100\%	If "Driving area" on (100\% = closed)
	[0\%]	
Upper limit	0\%... 100\%	If "Driving area" on (100\% = closed)
	[100\%]	

Continued

4 input/4 output device

Communication objects and ETS parameters

Continued

ETS text	Values available [Default value]	Comment
	$0=$ Off	Enables the roller shutter to be included in scenarios
	$0=$ On	Defines the possibility of having the required roller shutter position with 4 objects devoted to their automatic control from the Bus (rain, wind, frost, block)
	$1=$ On	Used to view the section with "Warning-Out" param- eters, to enable the ETS obtaining to be switched on/ off (e.g. a weather station) and obtain the automatic movement of the roller shutters in the event of rain, wind, frost, block-out
Warning Function	$1=$ On	$0=$ Off
	[0]	

Scenarios

For each channel, 8 scenarios can be stored and called up. For each scenario, it is possible to select the scenario index, the position of the roller shutter and slats (only for Venetian blinds).

Scenario parameters: scenario management

ETS text	Values available [Default value]	Comment
Store scenarios	0=off	The "Store scenarios" function is used to store the state linked to a scenario with a message from the Bus (scene learn).
	1=on	
	[0]	
Scenario 1	1-64	Used to select the scenario index.
	Off	
	[Off]	
Scenario 1 Position	0\%-100\%	Used to select the roller shutter position when the scenario is called up
	[0]	
Scenario 1 - Slats position	0\%-100\%	Used to select the position of the slats when the scenario is called up (Venetian blinds only)
	[0]	
...		
Scenario 8		

The Store scenarios function is used to store the state linked to a scenario with a message from the Bus (scene learn).

Save scenes	O Not active Active
Scene 1	Not active
Scene 1 - Position	0\%
Scene 2	Not active
Scene 2 - Position	0\%
Scene 3	Not active
Scene 3 - Position	0\%
Scene 4	Not active
Scene 4 - Position	0\%
Scene 5	Not active
Scene 5 - Position	0\%
Scene 6	Not active
Scene 6 - Position	0\%
Scene 7	Not active
Scene 7 - Position	0\%
Scene 8	Not active
Scene 8 - Position	0\%

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Warnings Out 1/2 and 3/4

Warnings Parameters:

if the "Warning Function" parameter is enabled on the output, to define the operations to be performed automatically in the event of
the objects "Rain, Wind, Frost, Block" being activated by the Bus (by interaction with weather stations)

ETS text	Values available [Default value]	Comment
Warning order	$0=$ Wind, Rain, Frost, Block	To give a priority to the warnings
	1 = Wind, Rain, Block, Frost	
	2 = Wind, Block, Rain, Frost	
	$3 \text { = Block, Wind, }$ Rain, Frost	
	[0]	
Action after warnings/block reset	0 = No action	What the output does (Venetian blinds/roller shutter) when the warning or block ends
	$4 \text { = Door to previous }$ position	
	1 = Door to higher level	
	2 = Door to lower level	
	[0]	
"Wind" warning	$0=$ Off	
	$1=\mathrm{On}$	
	[0]	
Cycle time (min, 0 = Off)	0-120	From the moment the alarm is triggered, a time can be set after which the alarm condition is reset (if no other messages are received)
	[30]	
Action	0 = No action	Defines what happens in the event of a "Wind" alarm
	1 = Door to higher level	
	2 = Door to lower level	
	[0]	
"Rain" warning	0 = Off	
	$1=\mathrm{On}$	
	[0]	
Cycle time (min, 0 $=$ Off)	0-120	From the moment the alarm is triggered, a time can be set after which the alarm condition is reset (if no other messages are received)
	[30]	
Action	0 = No action	Defines what happens in the event of a "Rain" alarm
	1 = Door to higher level	
	2 = Door to lower level	
	[0]	

Continued

Order of Alerts
Action at reset of alerts/blocking

Wind alert
Cycle Time (min, $0=0 \mathrm{ff}$)
Action

Rain alert
Cycle Time (min, $0=0 \mathrm{ff}$)
Action

Frost alert
Cycle Time (min, $0=0 \mathrm{ff}$)

Action

Block

Action
Warnings Parameters

ETS text	Values available [Default value]	Comment
"Frost" warning	0 = Off	
	1 = On	
	[0]	
Cycle time (min, 0 = Off)	0-120	From the moment the alarm is triggered, a time can be set after which the alarm condition is reset (if no other messages are received)
	[30]	
Action	0 = No action	Defines what happens in the event of a "Frost" alarm
	1 = Door to higher level	
	2 = Door to lower level	
	[0]	
Block	0 = Off	
	1 = On	
	[0]	
Action	0 = No action	
	1 = Door to higher level	
	2 = Door to lower level	
	[0]	

4 input/4 output device

Communication objects and ETS parameters

Automatic operation

In this point the object block and required position are assigned, if the "Automatic operation" parameter is enabled on the output.

Automatic parameters

ETS text	Values available [Default value]	Comment
	Block A	The automatic operations are divided into 2 blocks A and B that can be associat- ed to outputs 1/2 and 3/4.
	Block B	For each of the 4 automatic operations, it is possible to define the roller shutter position (100\% = Closed)
Automatic opera- tion 1 (-4) - Position	$0 \%-100 \%$	For each of the 4 automatic operations, it is possible
	[0\%]	to define the slat position (100\% = Closed)

Automatic objects

Automatic operation parameters

Automatic function 1 - Position
Automatic function 1 - Position of slats

Automatic function 2 - Position
Automatic function 2 - Position of slats
Automatic function 3 - Position
Automatic function 3 - Position of slats
Automatic function 4 - Position
Automatic function 4 - Position of slats

Inputs

Input, grouped channels $1 / 2$ and $3 / 4$, dimmer control The parameters in the window to the side are available for each channel and are identical for all of them.

Note.

Automatic 1 = position 1 - position 2 - position 3 - position 4.
Automatic $2=$ position $1-$ position $2-$ position $3-$ position 4.

O Block A Block B
$0 \% ~$

In $1 / 2$	(O) Dimming Sun protection
Diming Function $1 / 2$	() Brighter/Darker Darker/Brighter

Block
O Inactive Active

Dimmer control parameters - grouped channels

Input, grouped channels, roller shutter control
The following parameters are available for each channel and are identical for all of them.

Grouped parameters
Select the input $1 / 2$ and $3 / 4$ functions - dimmer or roller shutter control.

ETS text	Values available [Default value]	Comment
Input 1/2 Input 3/4	0: dimmer control	Defines the type of command of the pair of inputs
	1: roller shutter control	
	[2] Off	
Function control 1/2 Function control 3/4	0: increase/ decrease	Defines the function associated to the contact closing on $\operatorname{IN} 1$ or $\operatorname{IN} 2$ (or IN 3 and IN 4)
	1: decrease/ increase	
	[0]	
Roller shutter function 1/2 Roller shutter function 3/4	0: Down/Up	Defines the function associated to the contact closing on IN 1 or IN 2 (or IN 3 and IN 4)
	1: Up/Down	
	[0]	
Block	0: Off	To enable the block of channels $1 / 2$ and $3 / 4$ from the Bus
	1: On	
	[0]	

In 1/2
Shutter Function $1 / 2$
(O) Down, Up

Up, Down

Block
O Inactive Active

Roller shutter control parameters - grouped channels

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Single channels 1, 2, 3, 4:
the inputs work independently
For each channel there are 6 options:

- Off

Value to send
Switch rising edge

Value Rising Edge
Off On

- Dimmer control with single button
- Roller shutter control with single button
- Counter

Switching to an object parameters (for sending commands)

ETS text	Values available [Default value]	Comment
Function secondary	0 = Rising edge switching	Rising edge $=\mathrm{IN}$ contact closing
	1 = Toggle rising edge	Falling edge $=\operatorname{IN}$ contact opening
		Select "Switching module" to send an On or Off for the chosen edge, an no sending when the input state is next changed.
	2 = Rising edge switching module	
		If "Toggle" is set for each selected edge On/Off/On will be sent in sequence, etc. (but the input state object must also be linked to the same group).
	3 = Toggle falling edge	
	[1]	
Falling edge value	0 = Off	If "Switching module" is set to "Falling edge" or "Send state"
	1 = On	
	[0]	
Rising edge value	0 = Off	If "Switching module" is set to "Rising edge" or "Send state"
	1 = On	
	[0]	
Value type	1... 3000	If the switching module-input is set to "Send value"
	[1]	
Value	1 = Number	Select whether to send a number $0 \div 255$ or a Float $0 \div 65535$ (percentage)
	2 = Float	
	[1]	
Number value	0... 255	If the value to send is a number
	[2]	
Float value in degrees 1/100	0-65535	If the value to send is a 1/100 percentage
	[2000]	
Block	0 = off	Enabling this, an object appears that if set to "1" blocks the possibility to control the input
	1 = on	
	[0]	

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Switching module parameters for several objects (to send commands and values)
You can select whether to send commands (e.g. "On") or a value (e.g. "1 byte") on an input short press, and another (e.g. "Off") or a value (e.g. "2 bytes") on a long press. The time for determining a long press is set in the general parameters.

ETS text	Values available [Default value]	Comment
Type of control	$0=$ On the edge	On the edge = to be able to select whether to send On or Off on the rising or falling edge on 2 objects Short/Long press = to be able to send commands/ Values on a short and long press on 2 or more objects Value $=$ to send values of 1 byte or 2 bytes on a short and long press on 2 objects Sequence = to be able to send sequence cycles of 1 bit or 1 byte on a maximum of 4 objects with short and long press
	1 = Short/Long press	
	$2=$ Value	
	3 = Sequence	
	[0]	
Values by type of control "On the edge"	0 = Rising edge value	Used to select whether to send On or Off to the rising edge
	1 = Falling edge value	Used to select whether to send On or Off to the falling edge
	[0]	
Values by type of control "Short/Long press". The indicated values can be selected fro both short press and long press	No reaction	No action on short press (...long)
	$0=$ On/Off	Toggle On/Off on short press (...long)
	$1=\mathrm{On}$	Send On on short press (... long)
	$2=$ Off	Send Off on short press (... long)
	3 = Scenario	Call up scenario on short press (...long)
	4 = Store scenario	Store scenario on short press (...long)
	5 = Force On	Request forcing to On on short press (...long)
	6 = Force Off	Request forcing to Off on short press (...long)
	7 = Disable forcing	Request force disabling on short press (...long)
	$8=$ Force On/ deactivation	Toggle forcing on and disabling forcing on short press (...long)
	9 = Forced Off/ deactivation	Toggle forcing off and disabling forcing on short press (...long)
	[0]	
Values by type of control "Value"	$0=1$ byte	Possibility to select a 1 byte value to send on short press (...long)
	$1=2$ bytes	Possibility to select a 2 bytes value to send on short press (...long)
	[0]	

[^0]Function Switching multiple Objects

Control type

Value Rising edge
Value on Falling Edge

Block

Values by type of control "On the edge"

Function

Control type
Short press function
Long press function
Value Long

Block
O Inactive \bigcirc Active
Values by type of control "Short/Long press" with toggle on short press and call up scenario 1 on long press

Function

Control type
Value type

Value to send
Long press second value
Value to send
Switching multiple Objects

O 1 Byte 2 Bytes

No O Yes
23
(O) Inactive

Active
Block
Inactive Active

Values by type of control "Value" with sending a value 1 byte on short press and value 23 on long press

4 input/4 output device

VIMAR
Communication objects and ETS parameters

Continued			Function	Switching multiple Objects	\checkmark
ETS text	Values available [Default value]	Comment			
Values by type of control "Sequence"	$0=1$ bit	Cyclical: possibility to send a	Control type	Sequence	\checkmark
		bit sequence on a number of objects $2 \div 4$ with sequence $1,2, \ldots, 1,2, \ldots$	Data Format	O) 1 Bit $\bigcirc 1$ Byte	
		Increasing/decreasing: possibility to send a bit sequence on a number of objects $2 \div 4$ with sequence $1,2, \ldots, 2,1,2, \ldots$	Sequence type	O Cycling Increasing/Decreasing	
			Number of objects	4	\checkmark
			Value 1	O On Off	
	1 = 1 byte	Cyclical: possibility to send a byte sequence on a number of objects $2 \div 4$ with sequence $1,2, \ldots, 1,2, \ldots$	Value 2 Value 3	On Off On Off	
		Increasing/decreasing: possibility to send a byte sequence on a number of objects $2 \div 4$ with sequence $1,2, \ldots, 2,1,2, \ldots$	Value 4 Long press function	On O Off Disable O Enable	
	[0]		Number of objects	2	-
			Value 1	O On Off	
			Value 2	On O Off	
			Block	O Inactive Active	

Values by type of control "Sequence" with cyclical sending of a bit on 4 objects on short press and cyclical sending of a bit on 2 objects on long press

Function	Counter	
Counter Type	8 -bit	
Threshold Active	No O Yes	
Counter Limit	50	$*$
Sending Difference	5	Inactive Active

"Counter" parameters
To increase a counter with the input (reset when the Bus is powered off).

ETS text	Values available [Default value]	Comment
Type of counter	1 = 8 bit	When the input contact is closed a counter is increased
	$2=16$ bit	
	$3=32$ bit	
	[1]	
Threshold on	0 = Off	A limit can be set for the counter
	1 = On	
	[0]	
Send difference (8 bit)	0-255	Define every how many pulses the value must be sent to the Bus
	[5]	
Counter limit (8 bit)	0-255	(if the "Threshold on" parameter is on) when this value is reached a warning bit is sent to the Bus
	[50]	
Send difference (16 bit)	0-65535	16 bit
	[100]	
Counter limit (16 bit)	0-653535	16 bit
	[200]	
Send difference (32 bit)	0-2147483647	32 bit
	[250]	
Counter limit (32 bit)	0-2147483647	32 bit
	[500]	
Block	0 = Off	To inhibit the input command from the Bus
	1 = On	
	[0]	

[^1]
4 input/4 output device

Communication objects and ETS parameters

"Single button control" parameters
To control a dimmer with a single input when the short press of an N.O. button switches it On/Off and a long press runs the cyclical positive/negative control until released.

ETS text	Values available [Default value]	Comment
Control steps	100\%	Sets the control speed
	50\%	
	25\%	
	12.5\%	
	6\%	
	3\%	
	1.5\%	
	[100\%]	
Repeat control telegrams	0 = No	Sets the control mode (continuous or step-step)
	1 = Yes	
	[0]	
Repeat time (s)	$0.3 \div 5$	If the control telegram repetition is on
Block	$0=\mathrm{No}$	The use of the input can be blocked with a bit "1" sent from the Bus to the specific object
	1 = Yes	
	[0]	

Function

Dimming steps

Repeat Dimming Telegrams

Block
"Dimmer control with one button" parameters
"Roller shutter control with single button" parameters To control a roller shutter with a single input when the short press of an N.O. button stops it and a long press moves it.

ETS text	Values available [Default value]	Comment
Block	$0=$ Off	The use of the input can be blocked with a bit "1" sent from the Bus to the specific object
	$1=$ On	$[0]$

"Roller shutter control with single button" parameters

4 input/4 output device

VIMAR

Communication objects and ETS parameters

Virtual pocket

The virtual pocket function can be enabled by selecting "Enabled" in the "Input/Output configuration" page. This function is used to check if a room is occupied and signal it in the 1 bit object "Presence in room". To implement the function, at least a motion sensor and a room access door opening and closing signal must be used. The use of another motion sensor or the configuration of an object signalling activity in the room are optional.
The following parameters are available for this function

ETS text	Values available [Default value]	Comment
	$0 \div 65535$ min	To select the presence in room detection wait time from the bus
	[5]	To enable a second motion sensor that can signal the presence in the room
Second motion sensor	Disabled	Enabled
	[Disabled]	If this parameter is enabled, any command received on the "Activity signalling" object signals the presence in the room
	Disabled	Enabled
	[Disabled]	

Waiting time

Second movement detector

Activity reporting
3
3×2
Disabled O Enabled
Disabled O Enabled

Virtual pocket parameters

The graphics below illustrate some cases of using the "virtual pocket" function. In all cases, the door opening and closing is signalled (received on the "Door input" object), as is the movement on a PIR (received on the "First motion sensor" object) and the room occupied is sent (on the "Presence in room" object).
General note: The motion sensor disabling time must be less than the timeout ("Wait time" parameter or "Wait time" object) for leaving the room. In this way, at the end of the timeout, the "Presence in room" signal is disabled and the room can be placed in the "not occupied" state.

CASE 2, PERSON ENTERING THE ROOM

CASE 2, PERSON ENTERING THE ROOM, IMPULSIVE DOOR

4 input device

VIMAR
Communication objects and ETS parameters

[^0]: Continued

[^1]: Counter parameters

